Human immunodeficiency virus 1 protease expressed in Escherichia coli behaves as a dimeric aspartic protease.

نویسندگان

  • T D Meek
  • B D Dayton
  • B W Metcalf
  • G B Dreyer
  • J E Strickler
  • J G Gorniak
  • M Rosenberg
  • M L Moore
  • V W Magaard
  • C Debouck
چکیده

Recombinant human immunodeficiency virus 1 (HIV-1) protease, purified from a bacterial expression system, processed a recombinant form of its natural substrate, Pr55gag, into protein fragments that possess molecular weights commensurate with those of the virion gag proteins. Molecular weights of the protease obtained under denaturing and nondenaturing conditions (11,000 and 22,000, respectively) and chemical crosslinking studies were consistent with a dimeric structure for the active enzyme. The protease appropriately cleaved the nonapeptide Ac-Arg-Ala-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2 between the tyrosine and proline residues. HIV-1 protease was sensitive to inactivators of the aspartic proteases. The aspartic protease inactivator 1,2-epoxy-3-(4-nitrophenoxy)propane produced irreversible, time-dependent inactivation of the protease. The pH-dependent kinetics of this inactivator were consistent with the requirement of an unprotonated carboxyl group in the active site of the enzyme, suggesting that HIV-1 protease is also an aspartic protease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human immunodeficiency virus protease. Bacterial expression and characterization of the purified aspartic protease.

The protease of human immunodeficiency virus has been expressed in Escherichia coli and purified to apparent homogeneity. Immunoreactivity toward anti-protease peptide sera copurified with an activity that cleaved the structural polyprotein gag p55 and the peptide corresponding to the sequence gag 128-135. The enzyme expressed as a nonfusion protein exhibits proteolytic activity with a pH optim...

متن کامل

Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach

Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...

متن کامل

Cloning and Expression of Soluble Recombinant HIV-1 CRF35 Protease-HP Thioredoxin Fusion Protein

BACKGROUND As a drug target and an antigenic agent, HIV-1 protease (HIV-1 PR) is at the center of attention for designing anti-AIDS inhibitors and diagnostic tests. In previous studies, the production of the recombinant protease has been faced with several difficulties; therefore, the aims of this study were the easy production, purification of the soluble form of protease in E. coli and invest...

متن کامل

Active human immunodeficiency virus protease is required for viral infectivity.

Retroviral proteins are synthesized as polyprotein precursors that undergo proteolytic cleavages to yield the mature viral proteins. The role of the human immunodeficiency virus (HIV) protease in the viral replication cycle was examined by use of a site-directed mutation in the protease gene. The HIV protease gene product was expressed in Escherichia coli and observed to cleave HIV gag p55 to g...

متن کامل

Autoprocessing: an essential step for the activation of HIV-1 protease.

Human immunodeficiency virus type 1 (HIV-1) expresses its structural and functional proteins within Gag-Pol precursor polyproteins. Specific proteolytic processing of the precursors by the viral protease is critical for the maturation and infectivity of viral particles. To observe the influence of autoprocessing on the activation of recombinant HIV-1 protease, we constructed different HIV-1 pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 86 6  شماره 

صفحات  -

تاریخ انتشار 1989